If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+32t+4=0
a = 16; b = 32; c = +4;
Δ = b2-4ac
Δ = 322-4·16·4
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{3}}{2*16}=\frac{-32-16\sqrt{3}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{3}}{2*16}=\frac{-32+16\sqrt{3}}{32} $
| 2x2-3x+8/9=0 | | 2.5x+2.5(2+x)=85 | | 14x=12x+4000 | | 50-11y=17 | | 21=x/4+13 | | z/10+7=1 | | 4x^2+32x-6=0 | | 4m+m*m=60 | | 3x^2+x-36=0 | | 3x-(12÷x)+1=0 | | 3x-8+6x-12=x-10+9x-13 | | X/8=5/4x= | | x-(12/x)+1=0 | | (12/y)-y+1/3=0 | | 4x=2332 | | 3x+415=2026 | | x-(12/x)+1/3=0 | | 20/x=12/5 | | 45/x=20/4 | | 6/2=x/6 | | 6x+6=33−3x | | 3y^2-y-36=0 | | s=27÷3 | | 5x+3=2(2x+4) | | x/9+9=-7 | | 100-x2=0 | | a÷4+6=16 | | F(x)=1/(×-1) | | 7(x)=(2/x)-(4/x) | | 13-4x=-23 | | |x|+|x|=5 | | 23-2*4x=-9 |